Abstract
Face recognition (FR) is an active yet challenging topic in computer vision applications. As a powerful tool to represent high dimensional data, recently sparse representation based classification (SRC) has been successfully used for FR. This paper discusses the metaface learning (MFL) of face images under the framework of SRC. Although directly using the training samples as dictionary bases can achieve good FR performance, a well learned dictionary matrix can lead to higher FR rate with less dictionary atoms. An SRC oriented unsupervised MFL algorithm is proposed in this paper and the experimental results on benchmark face databases demonstrated the improvements brought by the proposed MFL algorithm over original SRC.
Original language | English |
---|---|
Title of host publication | 2010 IEEE International Conference on Image Processing, ICIP 2010 - Proceedings |
Pages | 1601-1604 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 1 Dec 2010 |
Event | 2010 17th IEEE International Conference on Image Processing, ICIP 2010 - Hong Kong, Hong Kong Duration: 26 Sept 2010 → 29 Sept 2010 |
Conference
Conference | 2010 17th IEEE International Conference on Image Processing, ICIP 2010 |
---|---|
Country/Territory | Hong Kong |
City | Hong Kong |
Period | 26/09/10 → 29/09/10 |
Keywords
- Face recognition
- Metaface learning
- Sparse representation
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition
- Signal Processing