Abstract
The effect of annealing on 1 μm thick single and multilayer amorphous carbon (a-C) films prepared by filtered cathodic arc is investigated. Single layer films, with a sp2to sp3bonding fraction of approximately 50% increase their level of compressive stress following annealing. Multilayer films-consisting of alternating layers of high sp3fraction (tetrahedral amorphous carbon, ta-C) and intermediate sp3fraction show a decrease in compressive stress following annealing. Using cross-sectional transmission electron microscopy, we show that the single layer films and the intermediate sp3layers in the multilayer films develop a strong preferred orientation with graphite-like layers aligned perpendicular to the film surface. The ta-C layers in the multilayer films develop the opposite preferred orientation near their top interfaces. We conclude that these preferred orientation effects are linked to the stress profile of the structures. We propose an underlying mechanism for the annealing effects of a-C films based on ab initia calculations. In order to minimize total energy, intermediate sp3films will either decrease their sp3fraction and generate stress or increase their sp3fraction and relieve stress. On the other hand, high sp3films retain their high sp3fraction following annealing.
Original language | English |
---|---|
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 70 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Aug 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics