Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution

B.H. Cheng, H.W. Chen, K.J. Chang, Y.-C. Lan, Din-ping Tsai

Research output: Journal article publicationJournal articleAcademic researchpeer-review

15 Citations (Scopus)


Breaking diffraction limitation is one of the most important issues and still remains to be solved for the demand of high-density optoelectronic components, especially for the photolithography industry. Since the scattered signals of fine feature (i.e. the size is smaller than half of the illuminating wavelength ?) are evanescent, these signals cannot be captured by using conventional glass- or plastic-based optical lens. Hence the corresponding fine feature is lost. In this work, we propose and analyze a magnetically controlled InSb-dielectric multi-layered structure with ability of subwavelength resolution at THz region. This layered structure can resolve subwavelength structures at different frequencies merely changing the magnitude of external magnetic field. Furthermore, the resolving power for a fixed incident frequency can be increased by only increasing the magnitude of applied external magnetic field. By using transfer matrix method and effective medium approach, the mechanism of achieving super resolution is elucidated. The electromagnetic numerical simulation results also prove the rationality and feasibility of the proposed design. Because the proposed device can be dynamically reconfigured by simply changing the magnitude of external magnetic field, it would provide a practical route for multi-functional material, real-time super-resolution imaging, and photolithography.
Original languageEnglish
Article number18172
JournalScientific Reports
Publication statusPublished - 11 Dec 2015
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution'. Together they form a unique fingerprint.

Cite this