Abstract
Liver tumor-initiating cells (T-ICs) are capable of self-renewal and tumor initiation and are more chemoresistant to chemotherapeutic drugs. The current therapeutic strategies for targeting stem cell self-renewal pathways therefore represent rational approaches for cancer prevention and treatment. In the present study, we found that Lup-20(29)-en-3β-ol (lupeol), a triterpene found in fruits and vegetables, inhibited the self-renewal ability of liver T-ICs present in both hepatocellular carcinoma (HCC) cell lines and clinical HCC samples, as reflected by hepatosphere formation. Furthermore, lupeol inhibited in vivo tumorigenicity in nude mice and down-regulated CD133 expression, which was previously shown to be a T-IC marker for HCC. In addition, lupeol sensitized HCC cells to chemotherapeutic agents through the phosphatase and tensin homolog (PTEN)-Akt-ABCG2 pathway. PTEN plays a crucial role in the self-renewal and chemoresistance of liver T-ICs; down-regulation of PTEN by a lentiviral-based approach reversed the effect of lupeol on liver T-ICs. Using an in vivo chemoresistant HCC tumor model, lupeol dramatically decreased the tumor volumes of MHCC-LM3 HCC cell line-derived xenografts, and the effect was equivalent to that of combined cisplatin and doxorubicin treatment. Lupeol exerted a synergistic effect without any adverse effects on body weight when combined with chemotherapeutic drugs. Conclusion: Our results suggest that lupeol may be an effective dietary phytochemical that targets liver T-ICs.
Original language | English |
---|---|
Pages (from-to) | 160-170 |
Number of pages | 11 |
Journal | Hepatology |
Volume | 53 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2011 |
Externally published | Yes |
ASJC Scopus subject areas
- Hepatology