Lower residual limb for prosthetic socket design

Winson C.C. Lee, Ming Zhang

Research output: Chapter in book / Conference proceedingChapter in an edited book (as author)Academic researchpeer-review


Comfort is among the most important issues when fitting a prosthesis. However, high stress applied to the residual limb, which is not particularly tolerant to loading, can cause discomfort, pain, and tissue breakdown. In an attempt to improve prosthesis fit, it is important to study the stress distribution at the residual limb-prosthetic socket interface. Computational finite element (FE) modeling allows for efficient parametric analysis and is a useful tool for investigating the load transfer mechanics at the limb-socket interface. Due to the complicated frictional and sliding actions at the interface, however, simulation of the mechanical interaction between the limb and socket is challenging. In addition, a prosthetic socket is usually shape-rectified so as to redistribute the load to load-tolerant regions of the residual limb. After donning the shape-rectified socket, some mechanical stresses known as pre-stresses are produced. Many previous models have incorporated some simplifying assumptions when simulating the friction-slip and pre-stresses. This chapter illustrates a technique that simulates the contact at the limb-socket interface, considering both the friction/slip and pre-stress conditions, by using an automated contact method.

Original languageEnglish
Title of host publicationComputational Biomechanics of the Musculoskeletal System
PublisherCRC Press
Number of pages10
ISBN (Electronic)9781466588042
ISBN (Print)9781466588035
Publication statusPublished - 1 Jan 2014

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Lower residual limb for prosthetic socket design'. Together they form a unique fingerprint.

Cite this