Abstract
Direct bandgap semiconductors, such as In2O3, Cu2O, and SnO2, have enormous applications in photochemistry, photovoltaics, and optoelectronics. Due to the same parity of conduction and valence bands, the dipole transition is silent in these direct bandgap semiconductors. The low band-to-band transition efficiency prevents them from high intensity light emission or absorption. Here, we report the fabrication of SnO2quantum dots (QDs) with sizes less than the exciton Bohr radius by a facile "top-down" strategy based on laser fragmentation of SnO in water. The SnO2QDs shows exciton emission at ∼300 nm with a high quantum yield of ∼17%. Amplified spontaneous exciton emission is also achieved from a thin layer of SnO2QDs dispersed in PEG400on a quartz substrate. Therefore, we have shown that SnO2QDs can be a potential luminescent material suitable for the realization of ultraviolet B lasing devices.
Original language | English |
---|---|
Pages (from-to) | 11561-11567 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 5 |
Issue number | 23 |
DOIs | |
Publication status | Published - 7 Dec 2013 |
ASJC Scopus subject areas
- General Materials Science