Low intensity pulsed ultrasound increases the mechanical properties of the healing tissues at bone-tendon junction

Min Hua Lu, Yongping Zheng, Qing Hua Huang, Hong Bin Lu, Ling Qin

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

8 Citations (Scopus)

Abstract

The re-establishment of bone-tendon junction (BTJ) tissues is involved in many trauma and reconstructive surgeries. A direct BTJ repair requires a long period of immobilization which may be associated with a postoperative weak knee. In this study, we investigated if low-intensity pulsed ultrasound treatment increases the material properties of healing tissues at bone-tendon junction (BTJ) after partial patellectomy using rabbit models. Standard partial patellectomy was conducted on one knee of twenty four rabbits which were randomly divided into an ultrasound group and a control group. The bony changes of BTJ complexes around the BTJ healing interface were measured by anteroposterior x-ray radiographs; then the volumetric bone-mineral density (BMD) of the new bone was assessed using a peripheral computed tomography scanner (pQCT). The stiffness of patellar cartilage, fibrocartilage at the healing interface and the tendon were measured in situ using a novel noncontact ultrasound water jet indentation system. Not only significantly more newly formed bone at the BTJ healing interface but also increased stiffness of the junction tissues were found in the ultrasound group compared with the controls at week 18. In addition, the ultrasound group also showed significantly 44% higher BMD at week 6 than controls.
Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages2141-2144
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 1 Jan 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2 Sept 20096 Sept 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period2/09/096/09/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'Low intensity pulsed ultrasound increases the mechanical properties of the healing tissues at bone-tendon junction'. Together they form a unique fingerprint.

Cite this