Long Text and Multi-Table Summarization: Dataset and Method

Shuaiqi Liu, Jiannong Cao, Ruosong Yang, Zhiyuan Wen

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Automatic document summarization aims to produce a concise summary covering the input document's salient information. Within a report document, the salient information can be scattered in the textual and non-textual content. However, existing document summarization datasets and methods usually focus on the text and filter out the non-textual content. Missing tabular data can limit produced summaries' informativeness, especially when summaries require covering quantitative descriptions of critical metrics in tables. Existing datasets and methods cannot meet the requirements of summarizing long text and multiple tables in each report. To deal with the scarcity of available data, we propose FINDSum, the first large-scale dataset for long text and multi-table summarization. Built on 21,125 annual reports from 3,794 companies, it has two subsets for summarizing each company's results of operations and liquidity. To summarize the long text and dozens of tables in each report, we present three types of summarization methods. Besides, we propose a set of evaluation metrics to assess the usage of numerical information in produced summaries. Dataset analyses and experimental results indicate the importance of jointly considering input textual and tabular data when summarizing report documents.
Original languageEnglish
Title of host publicationEMNLP 2022 Findings
Pages1-16
Number of pages16
DOIs
Publication statusPublished - 2023
EventThe 2022 Conference on Empirical Methods in Natural Language Processing - Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022
https://2022.emnlp.org/

Competition

CompetitionThe 2022 Conference on Empirical Methods in Natural Language Processing
Abbreviated titleEMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period7/12/2211/12/22
Internet address

Fingerprint

Dive into the research topics of 'Long Text and Multi-Table Summarization: Dataset and Method'. Together they form a unique fingerprint.

Cite this