TY - JOUR
T1 - Long-term inhibition of mutant LRRK2 hyper-kinase activity reduced mouse brain α-synuclein oligomers without adverse effects
AU - Ho, Philip Wing Lok
AU - Chang, Eunice Eun Seo
AU - Leung, Chi Ting
AU - Liu, Huifang
AU - Malki, Yasine
AU - Pang, Shirley Yin Yu
AU - Choi, Zoe Yuen Kiu
AU - Liang, Yingmin
AU - Lai, Weng Seng
AU - Ruan, Yuefei
AU - Leung, Kenneth Mei Yee
AU - Yung, Susan
AU - Mak, Judith Choi Wo
AU - Kung, Michelle Hiu Wai
AU - Ramsden, David B.
AU - Ho, Shu Leong
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/9/10
Y1 - 2022/9/10
N2 - Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.
AB - Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.
UR - http://www.scopus.com/inward/record.url?scp=85138300332&partnerID=8YFLogxK
U2 - 10.1038/s41531-022-00386-9
DO - 10.1038/s41531-022-00386-9
M3 - Journal article
AN - SCOPUS:85138300332
SN - 2373-8057
VL - 8
JO - npj Parkinson's Disease
JF - npj Parkinson's Disease
IS - 1
M1 - 115
ER -