Abstract
We study long-haul Quasi-Single-mode (QSM) systems in which signals are transmitted in the fundamental modes of a few-mode fiber (FMF) while keeping other system components such as amplifiers and receivers are kept single-moded. The large-effective-area nature of the FMF fundamental modes improves system nonlinear tolerance in the expense of mode coupling along FMF transmissions which induces multi-path interference (MPI) and needs to be compensated. We analytically investigate 6-spatial-polarization mode QSM transmission systems in presence of MPI and show that in the weak coupling regime, the QSM channel is a Gaussian random process in frequency. MPI compensation filters are derived and performance penalties due to MPI and signal loss from higher-order modes are characterized. We also experimentally demonstrate 256 Gb/s polarization multiplexed (PM)-16-QAM QSM transmissions over a record distance of 2600 km with 100-km span using decision directed least mean square (DD-LMS) algorithm for MPI compensation.
Original language | English |
---|---|
Pages (from-to) | 3156-3169 |
Number of pages | 14 |
Journal | Optics Express |
Volume | 23 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics