TY - GEN
T1 - Logical Reasoning with Relation Network for Inductive Knowledge Graph Completion
AU - Zhang, Qinggang
AU - Duan, Keyu
AU - Dong, Junnan
AU - Zheng, Pai
AU - Huang, Xiao
N1 - Publisher Copyright:
© 2024 Copyright held by the owner/author(s).
PY - 2024/8/24
Y1 - 2024/8/24
N2 - Inductive knowledge graph completion (KGC) aims to infer the missing relation for a set of newly-coming entities that never appeared in the training set. Such a setting is more in line with reality, as real-world KGs are constantly evolving and introducing new knowledge. Recent studies have shown promising results using message passing over subgraphs to embed newly-coming entities for inductive KGC. However, the inductive capability of these methods is usually limited by two key issues. (i) KGC always suffers from data sparsity, and the situation is even exacerbated in inductive KGC where new entities often have few or no connections to the original KG. (ii) Cold-start problem. It is over coarse-grained for accurate KG reasoning to generate representations for new entities by gathering the local information from few neighbors. To this end, we propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion. It aims to mine latent relation patterns for inductive KG completion. Specifically, by centering on relations, NORAN provides a hyper view towards KG modeling, where the correlations between relations can be naturally captured as entity-independent logical evidence to conduct inductive KGC. Extensive experiment results on five benchmarks show that our framework substantially outperforms the state-of-the-art KGC methods.
AB - Inductive knowledge graph completion (KGC) aims to infer the missing relation for a set of newly-coming entities that never appeared in the training set. Such a setting is more in line with reality, as real-world KGs are constantly evolving and introducing new knowledge. Recent studies have shown promising results using message passing over subgraphs to embed newly-coming entities for inductive KGC. However, the inductive capability of these methods is usually limited by two key issues. (i) KGC always suffers from data sparsity, and the situation is even exacerbated in inductive KGC where new entities often have few or no connections to the original KG. (ii) Cold-start problem. It is over coarse-grained for accurate KG reasoning to generate representations for new entities by gathering the local information from few neighbors. To this end, we propose a novel iNfOmax RelAtion Network, namely NORAN, for inductive KG completion. It aims to mine latent relation patterns for inductive KG completion. Specifically, by centering on relations, NORAN provides a hyper view towards KG modeling, where the correlations between relations can be naturally captured as entity-independent logical evidence to conduct inductive KGC. Extensive experiment results on five benchmarks show that our framework substantially outperforms the state-of-the-art KGC methods.
KW - knowledge graph
KW - logical reasoning
KW - message passing
UR - http://www.scopus.com/inward/record.url?scp=85203140687&partnerID=8YFLogxK
U2 - 10.1145/3637528.3671911
DO - 10.1145/3637528.3671911
M3 - Conference article published in proceeding or book
AN - SCOPUS:85203140687
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 4268
EP - 4277
BT - KDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Y2 - 25 August 2024 through 29 August 2024
ER -