Local orbital-angular-momentum dependent surface states with topological protection

Menglin L.N. Chen, Li Jun Jiang, Zhihao Lan, Wei E.I. Sha

Research output: Journal article publicationJournal articleAcademic researchpeer-review

13 Citations (Scopus)

Abstract

Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependent unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.

Original languageEnglish
Pages (from-to)14428-14435
Number of pages8
JournalOptics Express
Volume28
Issue number10
DOIs
Publication statusPublished - 11 May 2020
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Local orbital-angular-momentum dependent surface states with topological protection'. Together they form a unique fingerprint.

Cite this