Local and global structure-aware entropy regularized mean teacher model for 3d left atrium segmentation

Wenlong Hang, Wei Feng, Shuang Liang, Lequan Yu, Qiong Wang, Kup Sze Choi, Jing Qin

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review


Emerging self-ensembling methods have achieved promising semi-supervised segmentation performances on medical images through forcing consistent predictions of unannotated data under different perturbations. However, the consistency only penalizes on independent pixel-level predictions, making structure-level information of predictions not exploited in the learning procedure. In view of this, we propose a novel structure-aware entropy regularized mean teacher model to address the above limitation. Specifically, we firstly introduce the entropy minimization principle to the student network, thereby adjusting itself to produce high-confident predictions of unannotated images. Based on this, we design a local structural consistency loss to encourage the consistency of inter-voxel similarities within the same local region of predictions from teacher and student networks. To further capture local structural dependencies, we enforce the global structural consistency by matching the weighted self-information maps between two networks. In this way, our model can minimize the prediction uncertainty of unannotated images, and more importantly that it can capture local and global structural information and their complementarity. We evaluate the proposed method on a publicly available 3D left atrium MR image dataset. Experimental results demonstrate that our method achieves outstanding segmentation performances than the state-of-the-art approaches in scenes with limited annotated images.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages10
ISBN (Print)9783030597092
Publication statusPublished - Sep 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12261 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020


  • Entropy minimization
  • Segmentation
  • Self-ensembling
  • Structural consistency

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this