TY - JOUR
T1 - Liver extraction using residual convolution neural networks from low-dose CT images
AU - Cheema, Muhammad Nadeem
AU - Nazir, Anam
AU - Sheng, Bin
AU - Li, Ping
AU - Qin, Jing
AU - Feng, David Dagan
PY - 2019/9
Y1 - 2019/9
N2 - An efficient and precise liver extraction from computed tomography (CT) images is a crucial step for computer-aided hepatic diseases diagnosis and treatment. Considering the possible risk to patient's health due to X-ray radiation of repetitive CT examination, low-dose CT (LDCT) is an effective solution for medical imaging. However, inhomogeneous appearances and indistinct boundaries due to additional noise and streaks artifacts in LDCT images often make it a challenging task. This study aims to extract a liver model from LDCT images for facilitating medical expert in surgical planning and post-operative assessment along with low radiation risk to the patient. Our method carried out liver extraction by employing residual convolutional neural networks (LER-CN), which is further refined by noise removal and structure preservation components. After patch-based training, our LER-CN shows a competitive performance relative to state-of-the-art methods for both clinical and publicly available MICCAI Sliver07 datasets. We have proposed training and learning algorithms for LER-CN based on back propagation gradient descent. We have evaluated our method on 150 abdominal CT scans for liver extraction. LER-CN achieves dice similarity coefficient up to 96.5[Formula: see text], decreased volumetric overlap error up to 4.30[Formula: see text], and average symmetric surface distance less than 1.4 [Formula: see text]. These findings have shown that LER-CN is a favorable method for medical applications with high efficiency allowing low radiation risk to patients.
AB - An efficient and precise liver extraction from computed tomography (CT) images is a crucial step for computer-aided hepatic diseases diagnosis and treatment. Considering the possible risk to patient's health due to X-ray radiation of repetitive CT examination, low-dose CT (LDCT) is an effective solution for medical imaging. However, inhomogeneous appearances and indistinct boundaries due to additional noise and streaks artifacts in LDCT images often make it a challenging task. This study aims to extract a liver model from LDCT images for facilitating medical expert in surgical planning and post-operative assessment along with low radiation risk to the patient. Our method carried out liver extraction by employing residual convolutional neural networks (LER-CN), which is further refined by noise removal and structure preservation components. After patch-based training, our LER-CN shows a competitive performance relative to state-of-the-art methods for both clinical and publicly available MICCAI Sliver07 datasets. We have proposed training and learning algorithms for LER-CN based on back propagation gradient descent. We have evaluated our method on 150 abdominal CT scans for liver extraction. LER-CN achieves dice similarity coefficient up to 96.5[Formula: see text], decreased volumetric overlap error up to 4.30[Formula: see text], and average symmetric surface distance less than 1.4 [Formula: see text]. These findings have shown that LER-CN is a favorable method for medical applications with high efficiency allowing low radiation risk to patients.
UR - http://www.scopus.com/inward/record.url?scp=85069217389&partnerID=8YFLogxK
U2 - 10.1109/TBME.2019.2894123
DO - 10.1109/TBME.2019.2894123
M3 - Journal article
C2 - 30668449
AN - SCOPUS:85069217389
SN - 0018-9294
VL - 66
SP - 2641
EP - 2650
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 9
ER -