Linear MMSE estimation of large-magnitude symmetric Levy-process phase-noise

Yeong Tzay Su, Kainam Thomas Wong, Keang Po Ho

Research output: Journal article publicationJournal articleAcademic researchpeer-review

5 Citations (Scopus)


The linear minimum-mean-square error (LMMSE) estimator is herein derived to estimate phase-noise of Levy statistics (including Wiener phase-noise) and of arbitrarily large magnitude. This estimator may be pre-set to any latency and any number of tabs. This estimator depends only on the signal-to-(additive)- noise ratio and the phase-noise variance, but requires no matrix-inversion.
Original languageEnglish
Article number5582321
Pages (from-to)3369-3374
Number of pages6
JournalIEEE Transactions on Communications
Issue number12
Publication statusPublished - 1 Dec 2010


  • Least mean square methods
  • parameter estimation
  • phase estimation
  • phase jitter
  • phase noise
  • recursive estimation

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Linear MMSE estimation of large-magnitude symmetric Levy-process phase-noise'. Together they form a unique fingerprint.

Cite this