Life cycle utility-informed maintenance planning based on lifetime functions: optimum balancing of cost, failure consequences and performance benefit

Samantha Sabatino, Dan M. Frangopol, You Dong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

40 Citations (Scopus)


Decision-making regarding the optimum maintenance of civil infrastructure systems under uncertainty is a topic of paramount importance. This topic is experiencing growing interest within the field of life cycle structural engineering. Embedded within the decision-making process and optimum management of engineering systems is the structural performance evaluation, which is facilitated through a comprehensive life cycle risk assessment. Lifetime functions including survivor, availability, and hazard at component and system levels are utilised herein to model, using closed-form analytical expressions, the time-variant effect of intervention actions on the performance of civil infrastructure systems. The presented decision support framework based on lifetime functions has the ability to quantify maintenance cost, failure consequences and performance benefit in terms of utility by considering correlation effects. This framework effectively employs tri-objective optimisation procedures in order to determine optimum maintenance strategies under uncertainty. It provides optimum lifetime intervention plans allowing for utility-informed decision-making regarding maintenance of civil infrastructure systems. The effects of the risk attitude, correlation among components and the number of maintenance interventions on the optimum maintenance strategies are investigated. The capabilities of the proposed decision support framework are illustrated on five configurations of a four-component system and an existing highway bridge.
Original languageEnglish
Pages (from-to)830-847
Number of pages18
JournalStructure and Infrastructure Engineering
Issue number7
Publication statusPublished - 2 Jul 2016
Externally publishedYes


  • correlation
  • decision-making
  • highway bridge
  • Lifetime functions
  • maintenance optimisation
  • risk assessment
  • risk attitudes

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Safety, Risk, Reliability and Quality
  • Geotechnical Engineering and Engineering Geology
  • Ocean Engineering
  • Mechanical Engineering

Cite this