Lidargait: Benchmarking 3d gait recognition with point clouds

Chuanfu Shen, Fan Chao, Wei Wu, Rui Wang, George Q. Huang, Shiqi Yu (Corresponding Author)

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

60 Citations (Scopus)

Abstract

Video-based gait recognition has achieved impressive results in constrained scenarios. However, visual cameras neglect human 3D structure information, which limits the feasibility of gait recognition in the 3D wild world. Instead of extracting gait features from images, this work explores precise 3D gait features from point clouds and proposes a simple yet efficient 3D gait recognition framework, termed LidarGait. Our proposed approach projects sparse point clouds into depth maps to learn the representations with 3D geometry information, which outperforms existing point-wise and camera-based methods by a significant margin. Due to the lack of point cloud datasets, we build the first large-scale LiDAR-based gait recognition dataset, SUSTech1K, collected by a LiDAR sensor and an RGB camera. The dataset contains 25,239 sequences from 1,050 subjects and covers many variations, including visibility, views, occlusions, clothing, carrying, and scenes. Extensive experiments show that (1) 3D structure information serves as a significant feature for gait recognition. (2) LidarGait outperforms existing point-based and silhouette-based methods by a significant margin, while it also offers stable cross-view results. (3) The LiDAR sensor is superior to the RGB camera for gait recognition in the outdoor environment. The source code and dataset have been made available at https://lidargait.github.io.
Original languageEnglish
Title of host publicationProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublisherIEEE
Pages1054-1063
Number of pages10
ISBN (Electronic)979-8-3503-0129-8
ISBN (Print)979-8-3503-0130-4
DOIs
Publication statusPublished - Jun 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Fingerprint

Dive into the research topics of 'Lidargait: Benchmarking 3d gait recognition with point clouds'. Together they form a unique fingerprint.

Cite this