TY - GEN
T1 - Learning 3D Features with 2D CNNs via Surface Projection for CT Volume Segmentation
AU - Song, Youyi
AU - Yu, Zhen
AU - Zhou, Teng
AU - Teoh, Jeremy Yuen Chun
AU - Lei, Baiying
AU - Choi, Kup Sze
AU - Qin, Jing
N1 - Funding Information:
Acknowledgement. The work described in this paper is supported by a grant from the Hong Kong Research Grants Council (Project No. PolyU 152035/17E), a grant from the Natural Foundation of China (Grant No. 61902232), a grant from the Li Ka Shing Foundation Cross-Disciplinary Research (Grant no. 2020LKSFG05D), a grant from the Innovative Technology Fund (Grant No. MRP/015/18), and a grant from the General Research Fund (Grant No. PolyU 152006/19E).
Funding Information:
The work described in this paper is supported by a grant from the Hong Kong Research Grants Council (Project No. PolyU 152035/17E), a grant from the Natural Foundation of China (Grant No. 61902232), a grant from the Li Ka Shing Foundation Cross-Disciplinary Research (Grant no. 2020LKSFG05D), a grant from the Innovative Technology Fund (Grant No. MRP/015/18), and a grant from the General Research Fund (Grant No. PolyU 152006/19E).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020/9
Y1 - 2020/9
N2 - 3D features are desired in nature for segmenting CT volumes. It is, however, computationally expensive to employ a 3D convolutional neural network (CNN) to learn 3D features. Existing methods hence learn 3D features by still relying on 2D CNNs while attempting to consider more 2D slices, but up until now it is difficulty for them to consider the whole volumetric data, resulting in information loss and performance degradation. In this paper, we propose a simple and effective technique that allows a 2D CNN to learn 3D features for segmenting CT volumes. Our key insight is that all boundary voxels of a 3D object form a surface that can be represented by using a 2D matrix, and therefore they can be perfectly recognized by a 2D CNN in theory. We hence learn 3D features for recognizing these boundary voxels by learning the projection distance between a set of prescribed spherical surfaces and the object’s surface, which can be readily performed by a 2D CNN. By doing so, we can consider the whole volumetric data when spherical surfaces are sampled sufficiently dense, without any information loss. We assessed the proposed method on a publicly available dataset. The experimental evidence shows that the proposed method is effective, outperforming existing methods.
AB - 3D features are desired in nature for segmenting CT volumes. It is, however, computationally expensive to employ a 3D convolutional neural network (CNN) to learn 3D features. Existing methods hence learn 3D features by still relying on 2D CNNs while attempting to consider more 2D slices, but up until now it is difficulty for them to consider the whole volumetric data, resulting in information loss and performance degradation. In this paper, we propose a simple and effective technique that allows a 2D CNN to learn 3D features for segmenting CT volumes. Our key insight is that all boundary voxels of a 3D object form a surface that can be represented by using a 2D matrix, and therefore they can be perfectly recognized by a 2D CNN in theory. We hence learn 3D features for recognizing these boundary voxels by learning the projection distance between a set of prescribed spherical surfaces and the object’s surface, which can be readily performed by a 2D CNN. By doing so, we can consider the whole volumetric data when spherical surfaces are sampled sufficiently dense, without any information loss. We assessed the proposed method on a publicly available dataset. The experimental evidence shows that the proposed method is effective, outperforming existing methods.
KW - CT image segmentation
KW - Learning 3D features by 2D CNNs
KW - Surface projection
UR - http://www.scopus.com/inward/record.url?scp=85092755528&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59719-1_18
DO - 10.1007/978-3-030-59719-1_18
M3 - Conference article published in proceeding or book
AN - SCOPUS:85092755528
SN - 9783030597184
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 176
EP - 186
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
A2 - Martel, Anne L.
A2 - Abolmaesumi, Purang
A2 - Stoyanov, Danail
A2 - Mateus, Diana
A2 - Zuluaga, Maria A.
A2 - Zhou, S. Kevin
A2 - Racoceanu, Daniel
A2 - Joskowicz, Leo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -