Lattice boltzmann simulation of the cross flow over a cantilevered and longitudinally vibrating circular cylinder

Yong Xia, De Tang Lu, Yang Liu, You Sheng Xu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

8 Citations (Scopus)

Abstract

The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder. This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 3D effect of a cantilevered cylinder. To meet the accuracy of this method, the present calculation is carried out at a low Reynolds number Re 100, as well as to make the vibration obvious, we make the vibration strong enough. The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough, our early works show that the 2D vortex shedding would be locked up by vibration. Contrarily, this phenomenon would not appear in the present 3D case because of the end effect of the cantilevered cylinder.
Original languageEnglish
Article number034702
JournalChinese Physics Letters
Volume26
Issue number3
DOIs
Publication statusPublished - 3 Jun 2009

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Lattice boltzmann simulation of the cross flow over a cantilevered and longitudinally vibrating circular cylinder'. Together they form a unique fingerprint.

Cite this