TY - JOUR
T1 - Large-scale water collection of bioinspired cavity-microfibers
AU - Tian, Ye
AU - Zhu, Pingan
AU - Tang, Xin
AU - Zhou, Chunmei
AU - Wang, Jianmei
AU - Kong, Tiantian
AU - Xu, Min
AU - Wang, Liqiu
N1 - Funding Information:
The financial support from the Research Grants Council of Hong Kong (GRF 17237316, 17211115 and 17207914), the University of Hong Kong (URC 201511159108 and 201411159074), the pilot project scheme and basic research grant (2015.4-2017.4) of Shandong Academy of Sciences, the Young Scholar’s Program (NSFC 11504238) of the National Natural Science Foundation of China, the Science and Technology Department of Guangdong Province (2016A050503048), and the Fundamental Research Program of Shenzhen (JCYJ20160229164007864) is gratefully acknowledged. This work was also supported in part by the Zhejiang Provincial, Hangzhou Municipal and Lin’an County Governments. We thank Jianchun Wang, Xueying Wang, Yan Li and Pei Zhao at Center for Transport Phenomenon, Shandong Academy of Sciences for their helpful discussion and technical support.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Large-scale and high-efficient water collection of microfibers with long-term durability still remains challenging. Here we present well-controlled, bioinspired spindle-knot microfibers with cavity knots (named cavity-microfiber), precisely fabricated via a simple gas-in-water microfluidic method, to address this challenge. The cavity-microfiber is endowed with unique surface roughness, mechanical strength, and long-term durability due to the design of cavity as well as polymer composition, thus enabling an outstanding performance of water collection. The maximum water volume collected on a single knot is almost 495 times than that of the knot on the cavity-microfiber. Moreover, the spider-web-like networks assembled controllably by cavity-microfibers demonstrate excellent large-scale and high-efficient water collection. To maximize the water-collecting capacity, nodes/intersections should be designed on the topology of the network as many as possible. Our light-weighted yet tough, low-cost microfibers with high efficiency in directional water transportation offers promising opportunities for large-scale water collection in water-deficient areas.
AB - Large-scale and high-efficient water collection of microfibers with long-term durability still remains challenging. Here we present well-controlled, bioinspired spindle-knot microfibers with cavity knots (named cavity-microfiber), precisely fabricated via a simple gas-in-water microfluidic method, to address this challenge. The cavity-microfiber is endowed with unique surface roughness, mechanical strength, and long-term durability due to the design of cavity as well as polymer composition, thus enabling an outstanding performance of water collection. The maximum water volume collected on a single knot is almost 495 times than that of the knot on the cavity-microfiber. Moreover, the spider-web-like networks assembled controllably by cavity-microfibers demonstrate excellent large-scale and high-efficient water collection. To maximize the water-collecting capacity, nodes/intersections should be designed on the topology of the network as many as possible. Our light-weighted yet tough, low-cost microfibers with high efficiency in directional water transportation offers promising opportunities for large-scale water collection in water-deficient areas.
UR - http://www.scopus.com/inward/record.url?scp=85032203592&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-01157-4
DO - 10.1038/s41467-017-01157-4
M3 - Journal article
C2 - 29057877
AN - SCOPUS:85032203592
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 1080
ER -