TY - GEN
T1 - Large-scale heterogeneous feature embedding
AU - Huang, Xiao
AU - Song, Qingquan
AU - Yang, Fan
AU - Hu, Xia
PY - 2019
Y1 - 2019
N2 - Feature embedding aims to learn a low-dimensional vector representation for each instance to preserve the information in its features. These representations can benefit various off-the-shelf learning algorithms. While embedding models for a single type of features have been well-studied, real-world instances often contain multiple types of correlated features or even information within a different modality such as networks. Existing studies such as multiview learning show that it is promising to learn unified vector representations from all sources. However, high computational costs of incorporating heterogeneous information limit the applications of existing algorithms. The number of instances and dimensions of features in practice are often large. To bridge the gap, we propose a scalable framework FeatWalk, which can model and incorporate instance similarities in terms of different types of features into a unified embedding representation. To enable the scalability, FeatWalk does not directly calculate any similarity measure, but provides an alternative way to simulate the similarity-based random walks among instances to extract the local instance proximity and preserve it in a set of instance index sequences. These sequences are homogeneous with each other. A scalable word embedding algorithm is applied to them to learn a joint embedding representation of instances. Experiments on four real-world datasets demonstrate the efficiency and effectiveness of FeatWalk.
AB - Feature embedding aims to learn a low-dimensional vector representation for each instance to preserve the information in its features. These representations can benefit various off-the-shelf learning algorithms. While embedding models for a single type of features have been well-studied, real-world instances often contain multiple types of correlated features or even information within a different modality such as networks. Existing studies such as multiview learning show that it is promising to learn unified vector representations from all sources. However, high computational costs of incorporating heterogeneous information limit the applications of existing algorithms. The number of instances and dimensions of features in practice are often large. To bridge the gap, we propose a scalable framework FeatWalk, which can model and incorporate instance similarities in terms of different types of features into a unified embedding representation. To enable the scalability, FeatWalk does not directly calculate any similarity measure, but provides an alternative way to simulate the similarity-based random walks among instances to extract the local instance proximity and preserve it in a set of instance index sequences. These sequences are homogeneous with each other. A scalable word embedding algorithm is applied to them to learn a joint embedding representation of instances. Experiments on four real-world datasets demonstrate the efficiency and effectiveness of FeatWalk.
UR - http://www.scopus.com/inward/record.url?scp=85088783186&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85088783186
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 3878
EP - 3885
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -