Laboratory and numerical investigation of microwave heating properties of asphalt mixture

Haopeng Wang, Yue Zhang, Yi Zhang, Shuyin Feng, Guoyang Lu, Lintao Cao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

17 Citations (Scopus)

Abstract

Microwave heating is an encouraging heating technology for the maintenance, recycling, and deicing of asphalt pavement. To investigate the microwave heating properties of asphalt mixture, laboratory tests and numerical simulations were done and compared. Two types of Stone Mastic Asphalt (SMA) mixture samples (with basalt aggregates and steel slag aggregates) were heated using a microwave oven for different times. Numerical simulation models of microwave heating of asphalt mixture were developed with finite element software COMSOL Multiphysics. The main thermal and electromagnetic properties of asphalt mixture, served as the model input parameters, were measured through a series of laboratory tests. Both laboratory-measured and numerical simulated surface temperatures were recorded and analyzed. Results show that the replacement of basalt aggregates with steel slag aggregates can significantly increase the microwave heating efficiency of asphalt mixture. Numerical simulation results have a good correlation with laboratory test results. It is feasible to use the developed model coupling electromagnetic waves with heat transfer to simulate the microwave heating process of asphalt mixture.

Original languageEnglish
Article number146
JournalMaterials
Volume12
Issue number1
DOIs
Publication statusPublished - 4 Jan 2019
Externally publishedYes

Keywords

  • Asphalt mixture
  • Dielectric loss
  • Electromagnetic
  • Microwave heating
  • Numerical simulation
  • Steel slag

ASJC Scopus subject areas

  • Materials Science(all)

Cite this