Abstract
We propose and experimentally verify an innovative label-free optical fiber biosensor based on a Mach-Zehnder interferometer for bovine serum albumin (BSA) concentration detection. The proposed fiber biosensor utilized a micro-cavity within a single-mode fiber to induce Mach-Zehnder interference. A remarkable feature of this biosensor is that external media can directly interact with the fiber core signal through microfluidic channels connected to the micro-cavity and sensor surface. The device was fabricated by means of femtosecond laser micromachining and chemical etching. A fiber interferometer of this type exhibits an ultrahigh refractive index sensitivity of −10,055 nm/RIU and a detection limit of 3.5 × 10−5RIU. Different concentrations of BSA with an infinitesimally small refractive index difference can be clearly differentiated in situ by the interferential spectra of the structure. Experiments demonstrated the biosensor exhibited a BSA solution concentration sensitivity of −38.9 nm/(mg/mL) and a detection limit of 2.57 × 10−4mg/mL, respectively. Moreover, this biosensor is a sub-microliter dose and ultrasensitive at the low concentrations detected in BSA, which make it a promising for biochemical applications such as DNA hybridization, cancer screenings, medicine examination and environmental engineering, etc.
Original language | English |
---|---|
Pages (from-to) | 17105-17113 |
Number of pages | 9 |
Journal | Optics Express |
Volume | 25 |
Issue number | 15 |
DOIs | |
Publication status | Published - 24 Jul 2017 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics