Label efficient semi-supervised learning via graph filtering

Qimai Li, Xiao Ming Wu, Han Liu, Xiaotong Zhang, Zhichao Guan

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

11 Citations (Scopus)

Abstract

Graph-based methods have been demonstrated as one of the most effective approaches for semi-supervised learning, as they can exploit the connectivity patterns between labeled and unlabeled data samples to improve learning performance. However, existing graph-based methods either are limited in their ability to jointly model graph structures and data features, such as the classical label propagation methods, or require a considerable amount of labeled data for training and validation due to high model complexity, such as the recent neural-network-based methods. In this paper, we address label efficient semi-supervised learning from a graph filtering perspective. Specifically, we propose a graph filtering framework that injects graph similarity into data features by taking them as signals on the graph and applying a low-pass graph filter to extract useful data representations for classification, where label efficiency can be achieved by conveniently adjusting the strength of the graph filter. Interestingly, this framework unifies two seemingly very different methods-label propagation and graph convolutional networks. Revisiting them under the graph filtering framework leads to new insights that improve their modeling capabilities and reduce model complexity. Experiments on various semi-supervised classification tasks on four citation networks and one knowledge graph and one semi-supervised regression task for zero-shot image recognition validate our findings and proposals.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages9574-9583
Number of pages10
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
CountryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Statistical Learning

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this