TY - GEN
T1 - Knowledge-Aware Parameter Coaching for Personalized Federated Learning
AU - Zhi, Mingjian
AU - Bi, Yuanguo
AU - Xu, Wenchao
AU - Wang, Haozhao
AU - Xiang, Tianao
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Personalized Federated Learning (pFL) can effectively exploit the non-IID data from distributed clients by customizing personalized models. Existing pFL methods either simply take the local model as a whole for aggregation or require significant training overhead to induce the inter-client personalized weights, and thus clients cannot efficiently exploit the mutually relevant knowledge from each other. In this paper, we propose a knowledge-aware parameter coaching scheme where each client can swiftly and granularly refer to parameters of other clients to guide the local training, whereby accurate personalized client models can be efficiently produced without contradictory knowledge. Specifically, a novel regularizer is designed to conduct layer-wise parameters coaching via a relation cube, which is constructed based on the knowledge represented by the layered parameters among all clients. Then, we develop an optimization method to update the relation cube and the parameters of each client. It is theoretically demonstrated that the convergence of the proposed method can be guaranteed under both convex and non-convex settings. Extensive experiments are conducted over various datasets, which show that the proposed method can achieve better performance compared with the state-of-the-art baselines in terms of accuracy and convergence speed.
AB - Personalized Federated Learning (pFL) can effectively exploit the non-IID data from distributed clients by customizing personalized models. Existing pFL methods either simply take the local model as a whole for aggregation or require significant training overhead to induce the inter-client personalized weights, and thus clients cannot efficiently exploit the mutually relevant knowledge from each other. In this paper, we propose a knowledge-aware parameter coaching scheme where each client can swiftly and granularly refer to parameters of other clients to guide the local training, whereby accurate personalized client models can be efficiently produced without contradictory knowledge. Specifically, a novel regularizer is designed to conduct layer-wise parameters coaching via a relation cube, which is constructed based on the knowledge represented by the layered parameters among all clients. Then, we develop an optimization method to update the relation cube and the parameters of each client. It is theoretically demonstrated that the convergence of the proposed method can be guaranteed under both convex and non-convex settings. Extensive experiments are conducted over various datasets, which show that the proposed method can achieve better performance compared with the state-of-the-art baselines in terms of accuracy and convergence speed.
UR - http://www.scopus.com/inward/record.url?scp=85189506768&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i15.29651
DO - 10.1609/aaai.v38i15.29651
M3 - Conference article published in proceeding or book
VL - 38
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 17069
EP - 17077
BT - Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI2024)
ER -