Jointly learning semantic parser and natural language generator via dual information maximization

Hai Ye, Wenjie Li, Lu Wang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

17 Citations (Scopus)

Abstract

Semantic parsing aims to transform natural language (NL) utterances into formal meaning representations (MRs), whereas an NL generator achieves the reverse: producing a NL description for some given MRs. Despite this intrinsic connection, the two tasks are often studied separately in prior work. In this paper, we model the duality of these two tasks via a joint learning framework, and demonstrate its effectiveness of boosting the performance on both tasks. Concretely, we propose the method of dual information maximization (DIM) to regularize the learning process, where DIM empirically maximizes the variational lower bounds of expected joint distributions of NL and MRs. We further extend DIM to a semi-supervision setup (SEMIDIM), which leverages unlabeled data of both tasks. Experiments on three datasets of dialogue management and code generation (and summarization) show that performance on both semantic parsing and NL generation can be consistently improved by DIM, in both supervised and semi-supervised setups1.

Original languageEnglish
Title of host publicationACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages2090-2101
Number of pages12
ISBN (Electronic)9781950737482
Publication statusPublished - 2020
Event57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 - Florence, Italy
Duration: 28 Jul 20192 Aug 2019

Publication series

NameACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference57th Annual Meeting of the Association for Computational Linguistics, ACL 2019
Country/TerritoryItaly
CityFlorence
Period28/07/192/08/19

ASJC Scopus subject areas

  • Language and Linguistics
  • General Computer Science
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Jointly learning semantic parser and natural language generator via dual information maximization'. Together they form a unique fingerprint.

Cite this