Abstract
Causal relation extraction of biomedical entities is one of the most complex tasks in biomedical text mining, which involves two kinds of information: entity relations and entity functions. One feasible approach is to take relation extraction and function detection as two independent sub-tasks. However, this separate learning method ignores the intrinsic correlation between them and leads to unsatisfactory performance. In this paper, we propose a joint learning model, which combines entity relation extraction and entity function detection to exploit their commonality and capture their inter-relationship, so as to improve the performance of biomedical causal relation extraction. Experimental results on the BioCreative-V Track 4 corpus show that our joint learning model outperforms the separate models in BEL statement extraction, achieving the F1 scores of 57.0% and 37.3% on the test set in Stage 2 and Stage 1 evaluations, respectively. This demonstrates that our joint learning system reaches the state-of-the-art performance in Stage 2 compared with other systems.
Original language | English |
---|---|
Article number | 104318 |
Journal | Journal of Biomedical Informatics |
Volume | 139 |
Early online date | 11 Feb 2023 |
DOIs | |
Publication status | Published - Mar 2023 |
Keywords
- BEL Statement
- Function Detection
- Joint Learning
- Relation Extraction
ASJC Scopus subject areas
- Computer Science Applications
- Health Informatics