Investigation of interunit dispersion in 2D street canyons: A scaled outdoor experiment

Yuwei Dai, Cheuk Ming Mak, Yong Zhang, Dongjin Cui, Jian Hang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

10 Citations (Scopus)

Abstract

Interunit dispersion problems have been studied previously mainly through on-site measurements, wind tunnel tests, and CFD simulations. In this study, a scaled outdoor experiment was conducted to examine the interunit dispersion characteristics in consecutive two-dimensional street canyons. Tracer gas (CO2) was continuously released to simulate the pollutant dispersion routes between the rooms in street canyons. The wind velocity, wind direction, air temperature, and tracer gas concentrations were monitored simultaneously. Two important parameters, the air exchange rate and reentry ratio, were analyzed to reveal the ventilation performance and interunit dispersion of the rooms in the street canyons. Based on the real-time weather conditions, it was found that the ventilation performance of the source room varied according to the room location. The air exchange rate distribution of the leeward-side room was more stable than that of the windward side. The tracer gas was mainly transported in the vortex direction inside the street canyon, and the highest reentry ratio was observed at the room nearest to the source room along the transportation route. In addition, under real weather conditions, the rooms in the street canyon have a high probability of experiencing a high reentry ratio based on the maximum reentry ratio of each room. This study provides authentic airflow and pollutant dispersion information in the street canyons in an urban environment. The dataset of this experiment can be used to validate further numerical simulations.

Original languageEnglish
Article number106673
JournalBuilding and Environment
Volume171
DOIs
Publication statusPublished - 15 Mar 2020

Keywords

  • Interunit dispersion
  • Scaled outdoor experiment
  • Street canyon
  • Tracer gas method
  • Ventilation rate

ASJC Scopus subject areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Building and Construction

Cite this