TY - GEN
T1 - Investigation of a smart noise barrier for dual active and passive control of construction noise
AU - Lai, Siu Kai
AU - Zhang, Yiting
AU - Wang, Jiamei
AU - Leu, Shao Yuan
AU - Sun, Jian Qiao
N1 - Funding Information:
The work described in this paper was fully supported by the Environment and Conservation Fund of the Hong Kong Special Administrative Region (Smart Noise Barriers/Enclosures for Dual Active and Passive Control of Construction Noise (Project No.: ECF Project 83/2017)).
Publisher Copyright:
© Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020/8/23
Y1 - 2020/8/23
N2 - Construction noise generated from various powered mechanical equipment is mainly dominated by low-frequency sound components. A common practice to this severe noise problem for environmental protection is to block the acoustic transmission path between noise sources and sensitive receivers, in which noise barriers or acoustic enclosures are used to surround construction sites or powered mechanical equipment, respectively. Conventional passive noise barriers are generally made of aluminum, concrete, acrylic sheets or recycled materials, but it is not performed well for low-frequency noise. This research work is concerned with the investigation of a smart noise barrier for both active and passive control of construction noise. This hybrid-based noise barrier is made of two layers, one thick layer is a recycled composite material (i.e., a mixture of wood pellets and rubber particles) and the other one is a polyvinylidene fluoride (PVDF) thin-film. In view of the coupling design, the interaction of wood-rubber materials as a resilient layer can achieve good transmission loss at middle and high frequencies for passive noise control. In addition, recycling wood and rubber products into noise barriers is a sustainable technology that not only preserves the use of natural resources and also advances the engineering performance. In terms of active control, motivated by the high-quality piezo-actuator audio technology, PVDF thin-film materials are performed as a noise-cancellation speaker that can mitigate the low-frequency components of incident waves. To demonstrate the effectiveness of this dual-function noise barrier, a scale-down model is designed and tested in the in-house laboratory. Simple fabrication procedures of this barrier are also presented. It is expected that this study will bring a new idea for designing retractable and movable noise barriers/enclosures in open fields that can reduce the impact of construction noise for better environmental conservation.
AB - Construction noise generated from various powered mechanical equipment is mainly dominated by low-frequency sound components. A common practice to this severe noise problem for environmental protection is to block the acoustic transmission path between noise sources and sensitive receivers, in which noise barriers or acoustic enclosures are used to surround construction sites or powered mechanical equipment, respectively. Conventional passive noise barriers are generally made of aluminum, concrete, acrylic sheets or recycled materials, but it is not performed well for low-frequency noise. This research work is concerned with the investigation of a smart noise barrier for both active and passive control of construction noise. This hybrid-based noise barrier is made of two layers, one thick layer is a recycled composite material (i.e., a mixture of wood pellets and rubber particles) and the other one is a polyvinylidene fluoride (PVDF) thin-film. In view of the coupling design, the interaction of wood-rubber materials as a resilient layer can achieve good transmission loss at middle and high frequencies for passive noise control. In addition, recycling wood and rubber products into noise barriers is a sustainable technology that not only preserves the use of natural resources and also advances the engineering performance. In terms of active control, motivated by the high-quality piezo-actuator audio technology, PVDF thin-film materials are performed as a noise-cancellation speaker that can mitigate the low-frequency components of incident waves. To demonstrate the effectiveness of this dual-function noise barrier, a scale-down model is designed and tested in the in-house laboratory. Simple fabrication procedures of this barrier are also presented. It is expected that this study will bring a new idea for designing retractable and movable noise barriers/enclosures in open fields that can reduce the impact of construction noise for better environmental conservation.
UR - http://www.scopus.com/inward/record.url?scp=85101307283&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85101307283
T3 - Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020
BT - Proceedings of 2020 International Congress on Noise Control Engineering, INTER-NOISE 2020
A2 - Jeon, Jin Yong
PB - Korean Society of Noise and Vibration Engineering
T2 - 49th International Congress and Exposition on Noise Control Engineering, INTER-NOISE 2020
Y2 - 23 August 2020 through 26 August 2020
ER -