Abstract
Intrinsically stretchable organic photovoltaics (is-OPVs) with high efficiency and transparency are a great challenge for wearable applications. Herein, we report a full-solution-processed device framework for semi-transparent is-OPVs. A ferroconcrete-like AZO@silver nanowire ((AgNWs)@AZO; AAA) composite forms the back stretchable transparent electrode (STE), which not only offers a 3D long-range pathway for efficient charge transport and collection but also reinforces interfacial stability. The OPV based on AAA exhibits a power conversion efficiency (PCE) of 12.83% with an average visible transmittance of 26.7%. Further, by employing thermoplastic polyurethane-embedded AgNWs as the front STE, the full-solution-processed semi-transparent is-OPV achieves a record PCE of 10.90%. The is-OPV also exhibits excellent mechanical robustness and retains 76.5% of initial PCE after 500 cycles of 10% stretch-release. This work sets a foundation for constructing a semi-transparent is-OPV via a full-solution process for wearable applications and skin-like electronics.
Original language | English |
---|---|
Pages (from-to) | 1251-1263 |
Number of pages | 13 |
Journal | Energy and Environmental Science |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - 8 Feb 2023 |
ASJC Scopus subject areas
- Environmental Chemistry
- Renewable Energy, Sustainability and the Environment
- Nuclear Energy and Engineering
- Pollution