Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms

Ye Zhang, Mingchao Li, Shuai Han, Qiubing Ren, Jonathan Shi

Research output: Journal article publicationJournal articleAcademic researchpeer-review

65 Citations (Scopus)

Abstract

It is significant to identify rock-mineral microscopic images in geological engineering. The task of microscopic mineral image identification, which is often conducted in the lab, is tedious and time-consuming. Deep learning and convolutional neural networks (CNNs) provide a method to analyze mineral microscopic images efficiently and smartly. In this research, the transfer learning model of mineral microscopic images is established based on Inception-v3 architecture. The four mineral image features, including K-feldspar (Kf), perthite (Pe), plagioclase (Pl), and quartz (Qz or Q), are extracted using Inception-v3. Based on the features, the machine learning methods, logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN), multilayer perceptron (MLP), and gaussian naive Bayes (GNB), are adopted to establish the identification models. The results are evaluated using 10-fold cross-validation. LR, SVM, and MLP have a significant performance among all the models, with accuracy of about 90.0%. The evaluation result shows LR, SVM, and MLP are the outstanding single models in high-dimensional feature analysis. The three models are also selected as the base models in model stacking. The LR model is also set as the meta classifier in the final prediction. The stacking model can achieve 90.9% accuracy, which is higher than all the single models. The result also shows that model stacking effectively improves model performance.

Original languageEnglish
Article number3914
JournalSensors (Switzerland)
Volume19
Issue number18
DOIs
Publication statusPublished - 2 Sept 2019

Keywords

  • CNN
  • Deep learning
  • Machine learning
  • Model stacking
  • Rock-mineral microscopic images
  • Transfer learning

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms'. Together they form a unique fingerprint.

Cite this