Abstract
This paper presents a novel fuzzy particle swarm optimization with cross-mutated operation (FPSOCM), where a fuzzy logic is applied to determine the inertia weight of PSO and the control parameter of the proposed cross-mutated operation based on human knowledge. By introducing the fuzzy system, the value of the inertia weight of PSO becomes adaptive. The new cross-mutated operation effectively drives the solution to escape from local optima. To illustrate the performance of the FPSOCM, a suite of benchmark test functions are employed. Experimental results show the proposed FPSOCMmethod performs better than some existing hybrid PSO methods in terms of solution quality and solution reliability (standard deviation upon many trials). Moreover, an industrial application of economic load dispatch is given to show that the FPSOCM method performs statistically more significant than the existing hybrid PSO methods.
Original language | English |
---|---|
Title of host publication | 2012 IEEE Congress on Evolutionary Computation, CEC 2012 |
DOIs | |
Publication status | Published - 4 Oct 2012 |
Event | 2012 IEEE Congress on Evolutionary Computation, CEC 2012 - Brisbane, QLD, Australia Duration: 10 Jun 2012 → 15 Jun 2012 |
Conference
Conference | 2012 IEEE Congress on Evolutionary Computation, CEC 2012 |
---|---|
Country/Territory | Australia |
City | Brisbane, QLD |
Period | 10/06/12 → 15/06/12 |
Keywords
- Cross-mutated operation
- Economic load dispatch
- Fuzzy logic
- Inertia weight
- Particle swarm optimization
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Theoretical Computer Science