Integrated Sensing and Communication Exploiting Prior Information: How Many Sensing Beams are Needed?

Chan Xu, Shuowen Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

3 Citations (Scopus)

Abstract

This paper studies an integrated sensing and communication (ISAC) system where a multi-antenna base station (BS) aims to communicate with a single-antenna user in the downlink and sense the unknown and random angle parameter of a target via exploiting its prior distribution information. We consider a general transmit beamforming structure where the BS sends one communication beam and potentially one or multiple dedicated sensing beam(s). Firstly, motivated by the periodic feature of the angle parameter, we derive the periodic posterior Cramer-Rao bound (PCRB) for quantifying a lower bound of the mean-cyclic error (MCE), which is more accurate than the conventional PCRB for bounding the mean-squared error (MSE). Then, note that more sensing beams enable higher flexibility in enhancing the sensing performance, while also generating extra interference to the communication user. To resolve this trade-off, we formulate the transmit beamforming optimization problem to minimize the periodic PCRB subject to a communication rate requirement for the user. Despite the non-convexity of this problem, we derive the optimal solution by leveraging the semi-definite relaxation (SDR) technique and Lagrange duality theory. Moreover, we analytically prove that at most one dedicated sensing beam is needed. Numerical results validate our analysis and the advantage of having a dedicated sensing beam.

Original languageEnglish
Title of host publication2024 IEEE International Symposium on Information Theory, ISIT 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2802-2807
Number of pages6
ISBN (Electronic)9798350382846
DOIs
Publication statusPublished - Jul 2024
Event2024 IEEE International Symposium on Information Theory, ISIT 2024 - Athens, Greece
Duration: 7 Jul 202412 Jul 2024

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2024 IEEE International Symposium on Information Theory, ISIT 2024
Country/TerritoryGreece
CityAthens
Period7/07/2412/07/24

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Integrated Sensing and Communication Exploiting Prior Information: How Many Sensing Beams are Needed?'. Together they form a unique fingerprint.

Cite this