Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18%

Jiangkai Sun, Ruijie Ma, Xue Yang, Xiaoyu Xie, Dongcheng Jiang, Yuan Meng, Yiyun Li, Fengzhe Cui, Mengfei Xiao, Kangning Zhang, Yu Chen, Xinxin Xia, Maojie Zhang, Xiaoyan Du, Long Ye, Haibo Ma, Kun Gao, Feng Chen, Gang Li, Xiaotao HaoHang Yin

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators. Herein, we report a general and completely new effect of polymeric insulators in organic semiconductors: the insulator-donor electron wavefunction coupling effect. Such insulators can couple with donor polymers to reduce the energy barrier level and facilitate intramolecular electron transport. Besides the morphological effects, we observed that this coupling effect is another mechanism that can significantly enhance electron mobility (up to 100 times) through the incorporation of polymeric insulators in a series of donor systems. With this effect, we proposed a polymeric insulator blending approach to fabricate state-of-the-art pseudo-bilayer organic solar cells, and the PM6/L8-BO device exhibits a high efficiency of 19.50% (certificated 19.18%) with an improved interfacial electron transport property. This work not only offers a novel perspective on the quantum effect of polymeric insulators in organic semiconductors, but also presents a simple yet effective method for enhancing the performance of organic solar cells.

Original languageEnglish
Article numbernwae385
JournalNational Science Review
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Jan 2025

Keywords

  • electron transport
  • organic semiconductors
  • organic solar cells
  • polymeric insulators

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18%'. Together they form a unique fingerprint.

Cite this