Abstract
Three novel polythiophene isomers are reported whereby the only difference in structure relates to the regiochemistry of the solubilizing side chains on the backbone. This is demonstrated to have a significant impact on the optoelectronic properties of the polymers and their propensity to aggregate in solution. These differences are rationalized on the basis of differences in backbone torsion. The polymer with the largest effective conjugation length is demonstrated to exhibit the highest field-effect mobility, with peak values up to 4.6 cm2 V-1 s-1.
Original language | English |
---|---|
Pages (from-to) | 15154-15157 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 136 |
Issue number | 43 |
DOIs | |
Publication status | Published - 29 Oct 2014 |
ASJC Scopus subject areas
- General Chemistry
- Catalysis
- Biochemistry
- Colloid and Surface Chemistry