Influence of Seawater on the Morphological Evolution and the Microchemistry of Hydration Products of Tricalcium Silicates (C3S)

Sarah Abduljabbar Yaseen, Ghadah Abdaljabar Yiseen, Chi Sun Poon, Zongjin Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

The current work investigates the influence of seawater on morphological properties during the hydration process of tricalcium silicate (C3S) at 3, 7, 14, and 28 days to better understand the effect of salinity (highly soluble salts) of seawater on the microstructural evolution of hydration products. The mechanism of the chemical reaction of highly soluble salts, e.g., Na2SO4 and CaCl2, with hydrated C3S was also demonstrated. The presence of highly soluble salts in seawater accelerates the hydration of C3S significantly due to releasing a significant amount of Ca2+ ions from the hydrated C3S (as CH and CSH), which participated in the chemical reaction to produce a certain amount of gypsum crystals that was more than that in distilled water, which has been shown by SEM characterization. TEM analysis revealed the growth of sharp rod-like CaSO4·2H2O crystals together with some thin and tiny wrinkled CSH that formed. Seawater promotes the hydration of C3S, pointed out by the expedited heat flow and raised heat of hydration. FTIR spectroscopy has been used to characterize and observe the dynamics of variation in the formation of calcium silicate hydrate (CSH), portlandite (CH), and gypsum (Gy) throughout the hydration process of C3S with seawater in comparison with distilled water. XRD analysis revealed that the peak intensities of the portlandite and gypsum of the hydrated C3S in seawater are higher than the comparable peaks in distilled water.

Original languageEnglish
Pages (from-to)15875-15887
Number of pages13
JournalACS Sustainable Chemistry and Engineering
Volume8
Issue number42
DOIs
Publication statusPublished - 26 Oct 2020

Keywords

  • Calcium silicate hydrate (CSH)
  • Gypsum
  • Portlandite (CH)
  • Salinity
  • SEM
  • TEM
  • XRD

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Cite this