Abstract
The aim of the study was to investigate the influence of microstructure and phase composition on the mechanical behaviour of hydroxyapatite (HAp) and biphasic HAp/β-tricalcium phosphate (β-TCP) bioceramic materials using nanoindentation. The formation of β-TCP phase in the HAp ceramic had the predominant influence on the nanomechanical properties of compact ceramics. For investigated microstructures there appear to be a slight decrease in the elastic modulus with increasing load and a higher decrease in hardness, which are in agreement with upper bounds of the results reported in literature. Maximal value of reduced modulus and hardness is yielded with pure HAp, and is measured to be 133.76 GPa for average grain size of 3 μm and 12.18 GPa for average grain size of 140 nm, respectively. The average modulus and hardness results for HAp/β-TCP ceramics with higher (101.61 GPa, 6.76 GPa) and lower grain size (115.72 GPa, 8.76 GPa) show sufficient mechanical properties in order to serve as hard tissue replacement material.
Original language | English |
---|---|
Pages (from-to) | 2171-2178 |
Number of pages | 8 |
Journal | Ceramics International |
Volume | 35 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Aug 2009 |
Keywords
- B. Grain size
- C. Mechanical properties
- D. Apatite
- Nanoindentation
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry