Inductive granger causal modeling for multivariate time series

Yunfei Chu, Xiaowei Wang, Jianxin Ma, Kunyang Jia, Jingren Zhou, Hongxia Yang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

8 Citations (Scopus)

Abstract

Granger causal modeling is an emerging topic that can uncover Granger causal relationship behind multivariate time series data. In many real-world systems, it is common to encounter a large amount of multivariate time series data collected from different individuals with sharing commonalities. However, there are ongoing concerns regarding Granger causality's applicability in such large scale complex scenarios, presenting both challenges and opportunities for Granger causal structure reconstruction. Existing methods usually train a distinct model for each individual, suffering from inefficiency and over-fitting issues. To bridge this gap, we propose an Inductive GRanger cAusal modeling (InGRA) framework for inductive Granger causality learning and common causal structure detection on multivariate time series, which exploits the shared commonalities underlying the different individuals. In particular, we train one global model for individuals with different Granger causal structures through a novel attention mechanism, called prototypical Granger causal attention. The model can detect common causal structures for different individuals and infer Granger causal structures for newly arrived individuals. Extensive experiments, as well as an online A/B test on an E-commercial advertising platform, demonstrate the superior performances of InGRa.

Original languageEnglish
Title of host publicationProceedings - 20th IEEE International Conference on Data Mining, ICDM 2020
EditorsClaudia Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, Xindong Wu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages972-977
Number of pages6
ISBN (Electronic)9781728183169
DOIs
Publication statusPublished - Nov 2020
Externally publishedYes
Event20th IEEE International Conference on Data Mining, ICDM 2020 - Virtual, Sorrento, Italy
Duration: 17 Nov 202020 Nov 2020

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
Volume2020-November
ISSN (Print)1550-4786

Conference

Conference20th IEEE International Conference on Data Mining, ICDM 2020
Country/TerritoryItaly
CityVirtual, Sorrento
Period17/11/2020/11/20

Keywords

  • Attention mechanism
  • Granger causality
  • Inductive learning
  • LSTM
  • Time series

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Inductive granger causal modeling for multivariate time series'. Together they form a unique fingerprint.

Cite this