Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007

Tao Wang, X. L. Wei, A. J. Ding, C. N. Poon, Ka Se Lam, Yok Sheung Li, L. Y. Chan, M. Anson

Research output: Journal article publicationJournal articleAcademic researchpeer-review

384 Citations (Scopus)


Tropospheric ozone is of great importance with regard to air quality, atmospheric chemistry, and climate change. In this paper we report the first continuous record of surface ozone in the background atmosphere of South China. The data were obtained from 1994 to 2007 at a coastal site in Hong Kong, which is strongly influenced by the outflow of Asian continental air during the winter and the inflow of maritime air from the subtropics in the summer. Three methods are used to derive the rate of change in ozone. A linear fit to the 14-year record shows that the ozone concentration increased by 0.58 ppbv/yr, whereas comparing means in years 1994-2000 and 2001-2007 gives an increase of 0.87 ppbv/yr for a 7-year period. The ozone changes in air masses from various source regions are also examined. Using local wind and carbon monoxide (CO) data to filter out local influence, we find that ozone increased by 0.94 ppbv/yr from 1994- 2000 to 2001-2007 in air masses from Eastern China, with similar changes in the other two continent-influenced airmass groups, but no statistically significant change in the marine air. An examination of the nitrogen dioxide (NO2) column obtained from GOME and SCIAMACHY reveals an increase in atmospheric NO2in China's three fastest developing coastal regions, whereas NO2in other parts of Asia decreased during the same period, and no obvious trend over the main shipping routes in the South China Sea was indicated. Thus the observed increase in background ozone in Hong Kong is most likely due to the increased emissions of NO2(and possibly volatile organic compounds (VOCs) as well) in the upwind coastal regions of mainland China. The CO data at Hok Tsui showed less definitive changes com-pared to the satellite NO2column. The increase in background ozone likely made a strong contribution (81%) to the rate of increase in "total ozone" at an urban site in Hong Kong, suggesting the need to consider distant sources when developing long-term strategies to mitigate local ozone pollution.
Original languageEnglish
Pages (from-to)6217-6227
Number of pages11
JournalAtmospheric Chemistry and Physics
Issue number16
Publication statusPublished - 1 Jan 2009

ASJC Scopus subject areas

  • Atmospheric Science


Dive into the research topics of 'Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007'. Together they form a unique fingerprint.

Cite this