Abstract
Organosulfates (OSs), a key component of secondary organic aerosols (SOA), account for up to one third of organic matter in the atmosphere. However, high molecular weight (HMW, 500–800 Da) OSs in ambient aerosols are poorly characterized at a molecular level, due to experimental difficulties. With Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICRMS), we are able to identify more than 8,000 OSs in wintertime aerosols in Beijing. We found that both the number and signal magnitudes of HMW OSs with low H/C and O/C ratios and degrees of unsaturation were greatly enhanced during hazy days, indicating that most HMW OSs were freshly formed during stagnant air pollution episodes. They are most likely to be the oxidation products of semivolatility to low-volatility precursors (e.g., polycyclic aromatic hydrocarbons and fatty acids) and have showed a strong influence of anthropogenic emissions. The molecular corridor analysis suggests that the high abundance of HMW aromatic-like and aliphatic OSs considerably decreases the volatility of organic aerosols in the urban atmosphere.
Original language | English |
---|---|
Article number | e2019JD032200 |
Journal | Journal of Geophysical Research: Atmospheres |
Volume | 125 |
Issue number | 10 |
DOIs | |
Publication status | Published - 27 May 2020 |
Externally published | Yes |
Keywords
- FT-ICR MS
- Organic aerosol
- Organosulfates
- Secondary organic aerosol
- Volatile organic compounds
ASJC Scopus subject areas
- Geophysics
- Forestry
- Oceanography
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Earth and Planetary Sciences (miscellaneous)
- Space and Planetary Science
- Palaeontology