In situ tensile and creep testing of lithiated silicon nanowires

Steven Tyler Boles, Carl V. Thompson, Oliver Kraft, Reiner Mönig

Research output: Journal article publicationJournal articleAcademic researchpeer-review

40 Citations (Scopus)


We present experimental results for uniaxial tensile and creep testing of fully lithiated silicon nanowires. A reduction in the elastic modulus is observed when silicon nanowires are alloyed with lithium and plastic deformation becomes possible when the wires are saturated with lithium. Creep testing was performed at fixed force levels above and below the tensile strength of the material. A linear dependence of the strain-rate on the applied stress was evident below the yield stress of the alloy, indicating viscous deformation behavior. The observed inverse exponential relationship between wire radius and strain rate below the yield stress indicates that material transport was controlled by diffusion. At stress levels approaching the yield strength of fully lithiated silicon, power-law creep appears to govern the strain-rate dependence on stress. These results have direct implications on the cycling conditions, rate-capabilities, and charge capacity of silicon and should prove useful for the design and construction of future silicon-based electrodes.
Original languageEnglish
Article number263906
JournalApplied Physics Letters
Issue number26
Publication statusPublished - 23 Dec 2013
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this