Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm

Ya Yao, Benjamin James Allardyce, Rangam Rajkhowa, Dylan Hegh, Alessandra Sutti, Surya Subianto, Sunil Gupta, Santu Rana, S. Greenhill, Svetha Venkatesh, Xungai Wang, Joselito M. Razal

Research output: Journal article publicationJournal articleAcademic researchpeer-review

20 Citations (Scopus)

Abstract

Wet spinning of silkworm silk has the potential to overcome the limitations of the natural spinning process, producing fibers with exceptional mechanical properties. However, the complexity of the extraction and spinning processes have meant that this potential has so far not been realized. The choice of silk processing parameters, including fiber degumming, dissolving, and concentration, are critical in producing a sufficiently viscous dope, while avoiding silk's natural tendency to gel via self-assembly. This study utilized recently developed rapid Bayesian optimization to explore the impact of these variables on dope viscosity. By following the dope preparation conditions recommended by the algorithm, a 13% (w/v) silk dope was produced with a viscosity of 0.46 Pa·s, approximately five times higher than the dope obtained using traditional experimental design. The tensile strength, modulus, and toughness of fibers spun from this dope also improved by a factor of 2.20×, 2.16×, and 2.75×, respectively. These results represent the outcome of just five sets of experimental trials focusing on just dope preparation. Given the number of parameters in the spinning and post spinning processes, the use of Bayesian optimization represents an exciting opportunity to explore the multivariate wet spinning process to unlock the potential to produce wet spun fibers with truly exceptional mechanical properties.

Original languageEnglish
Pages (from-to)3197-3207
Number of pages11
JournalACS Biomaterials Science and Engineering
Volume6
Issue number5
DOIs
Publication statusPublished - 11 May 2020
Externally publishedYes

Keywords

  • adaptive experimental optimization
  • mechanical properties
  • regenerated silk
  • wet spinning

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm'. Together they form a unique fingerprint.

Cite this