Abstract
The accurate global navigation satellite system (GNSS) positioning in the dense urban areas is still a challenge, especially for low-cost receivers. The multipath effects and non-line-of-sight (NLOS) receptions from surrounding buildings will significantly degrade the positioning performance. Due to the increasing channel number in GNSS chip, the low-cost receiver tends to be capable of acquiring multi-frequency signals, including the new L5-band signal. Because of the higher chipping rate, the GNSS L5-band measurement is less affected by the multipath effect, whereas the measurement number is limited in the current stage. On the contrary, the availability of the conventional L1-band measurement is sufficient to achieve a good dilution of precision (DOP). Based on the complementary characteristics, a GNSS L1/L5 bands integrated positioning algorithm is developed in this study to improve the positioning performance in urban areas. A modified weighting model based on carrier-to-noise ratio and satellite elevation angle is employed to assign proper weighting between L1-band and L5-band measurements. Meanwhile, the dMP5 feature from dual-frequency measurement and the consistency check algorithm are employed to detect and exclude outliers, which are possibly NLOS receptions. Experimental results and analyses indicate that the developed DFE-CCWLS method can significantly improve the positioning accuracy, achieving the root-mean-square error less than 10 m for most of the urban scenarios.
Original language | English |
---|---|
Pages (from-to) | 1647-1658 |
Number of pages | 12 |
Journal | Advances in Space Research |
Volume | 66 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Oct 2020 |
Keywords
- GNSS
- GNSS L5-band
- Multipath
- Urban Canyon
ASJC Scopus subject areas
- Aerospace Engineering
- Astronomy and Astrophysics
- Geophysics
- Atmospheric Science
- Space and Planetary Science
- General Earth and Planetary Sciences