Improved flood forecasting using geomorphic unit hydrograph based on spatially distributed velocity field

Wen Chuan Wang, Yan Wei Zhao, Dong Mei Xu, Kwok Wing Chau, Chang Jun Liu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

7 Citations (Scopus)

Abstract

This paper presents an energy model for determining the overland flow velocity in order to improve the low accuracy problem in flow concentration simulation. It furnishes a novel idea for studying flow concentration in ungauged basins. The model can be widely applied in analysis of spatial velocity field, extraction of instantaneous geomorphic unit hydrograph and development of distributed hydrological model. A distributed flood-forecasting model is constructed for Lianyuan Basin in Hunan Province of China. In the proposed method, gravitational potential energy is transformed into kinetic energy via an analysis of energy distribution of water particles in the basin. Based on the kinetic energy equation, the overland flow velocity simulating the geomorphic unit hydrograph is computed. Rainfall-runoff simulation is then performed by integrating with runoff yield and concentration model. Results indicate that the model based on energy conversion leads to more accurate results. The model has the following advantages: firstly, the spatial distribution of the velocity field is appropriate; secondly, the model has only one parameter, which is easily determined; and finally, flow velocity results can be used for the computation of river network flow concentration.

Original languageEnglish
Pages (from-to)724-739
Number of pages16
JournalJournal of Hydroinformatics
Volume23
Issue number4
DOIs
Publication statusPublished - 1 Jul 2021

Keywords

  • Distributed hydrological model
  • Flood forecasting
  • Geomorphic unit hydrograph
  • Hydrodynamic energy
  • Spatially distributed velocity field

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Water Science and Technology
  • Geotechnical Engineering and Engineering Geology
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Improved flood forecasting using geomorphic unit hydrograph based on spatially distributed velocity field'. Together they form a unique fingerprint.

Cite this