Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination

Fan Dong, Zhenyu Wang, Yuhan Li, Wing Kei Ho, Shuncheng Lee

Research output: Journal article publicationJournal articleAcademic researchpeer-review

362 Citations (Scopus)


The immobilization of a photocatalyst on a proper support is pivotal for practical environmental applications. In this work, graphitic carbon nitride (g-C3N4) as a rising visible light photocatalyst was first immobilized on structured Al2O3 ceramic foam by a novel in situ approach. Immobilized g-C3N4 was applied for photocatalytic removal of 600 ppb level NO in air under real indoor illumination of an energy-saving lamp. The photocatalytic activity of immobilized g-C 3N4 was gradually improved as the pyrolysis temperature was increased from 450 to 600 °C. The optimized conditions for g-C 3N4 immobilization on Al2O3 supports can be achieved at 600 °C for 2 h. The NO removal ratio could reach up to 77.1%, exceeding that of other types of well-known immobilized photocatalysts. Immobilized g-C3N4 was stable in activity and can be used repeatedly without deactivation. The immobilization of g-C3N 4 on Al2O3 ceramic foam was found to be firm enough to overwhelm the continuous air flowing, which can be ascribed to the special chemical interaction between g-C3N4 and Al 2O3. On the basis of the 5,5′-dimethyl-1-pirroline- N-oxide electron spin resonance (DMPO ESR) spin trapping and reaction intermediate monitoring, the active species produced from g-C3N 4 under illumination were confirmed and the reaction mechanism of photocatalytic NO oxidation by g-C3N4 was revealed. The present work could provide new perspectives for promoting large-scale environmental applications of supported photocatalysts.
Original languageEnglish
Pages (from-to)10345-10353
Number of pages9
JournalEnvironmental Science and Technology
Issue number17
Publication statusPublished - 2 Sep 2014

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Cite this