Imaging delamination in composite laminates using perturbation to steady-state wavefields

Wei Xu, Maosen Cao, Zhongqing Su, Hao Xu, Maciej Radzieński, Wiesław Ostachowicz

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Delamination in composite laminates, though barely visible, can jeopardize integrity and safety of the composite structures. Interaction of guided waves with delamination in full wavefields have been widely used to graphically characterize the delamination. Recently, steady-state wavefields (SWs) in place of transient wavefields have been used for imaging delamination. However, interaction with delamination can be largely obscured by steady-state waves and hardly observed. Addressing this problem, this study proposes a novel approach for imaging delamination using perturbation to SWs. In particular, a new concept of delamination-caused perturbation to a SW is proposed. Compared to scattered waves from delamination, it is determined by delamination only and naturally sensitive to delamination. Delamination-caused perturbation to a SW is concentrated within the delamination region and rapidly attenuates at undamaged locations. On the basis of this new concept, a delamination index (DI) is established for imaging delamination, by which the delamination can be graphically characterized. The capability of the approach is experimentally validated on composite laminates with delamination, whose SWs are acquired through laser scanning. The experimental results validate that delamination imaging can be achieved by DIs, by which the occurrence, locations, and sizes of the delamination can be graphically characterized.

Original languageEnglish
Article number075023
JournalSmart Materials and Structures
Volume30
Issue number7
DOIs
Publication statusPublished - Jul 2021

Keywords

  • composite laminate
  • delamination
  • delamination index
  • laser scanning
  • steady-state wavefield
  • wavenumber filtering

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Cite this