Identifying optimal water resources allocation strategies through an interactive multi-stage stochastic fuzzy programming approach

Shuo Wang, G. H. Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

42 Citations (Scopus)


In this study, an interactive multi-stage stochastic fuzzy programming (IMSFP) approach has been developed through incorporating an interactive fuzzy resolution (IFR) method within an inexact multi-stage stochastic programming framework. IMSFP can deal with dual uncertainties expressed as fuzzy boundary intervals that exist in the objective function and the left- and right-hand sides of constraints. Moreover, IMSFP is capable of reflecting dynamics of uncertainties and the related decision processes through constructing a set of representative scenarios within a multi-stage context. A management problem in terms of water resources allocation has been studied to illustrate applicability of the proposed approach. The results indicate that a set of solutions under different feasibility degrees (i.e., risk of constraint violation) has been generated for planning the water resources allocation. They can not only help quantify the relationship between the objective-function value and the risk of violating the constraints, but also enable decision makers (DMs) to identify, in an interactive way, a desired compromise between two factors in conflict: satisfaction degree of the goal and feasibility degree of constraints. Besides, a number of decision alternatives have been generated under different policies for water resources management, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic penalties when the promised water-allocation targets are violated, and thus help DMs to identify desired water-allocation schemes under uncertainty. 2012.
Original languageEnglish
Pages (from-to)2015-2038
Number of pages24
JournalWater Resources Management
Issue number7
Publication statusPublished - 1 May 2012
Externally publishedYes


  • Fuzzy boundary interval
  • Interactive
  • Multi-stage
  • Policy analysis
  • Stochastic programming
  • Uncertainty
  • Water resources

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Water Science and Technology


Dive into the research topics of 'Identifying optimal water resources allocation strategies through an interactive multi-stage stochastic fuzzy programming approach'. Together they form a unique fingerprint.

Cite this