HTP: Exploiting Holistic Temporal Patterns for Sequential Recommendation

Rui Chen, Guotao Liang, Chenrui Ma, Qilong Han, Li Li, Xiao Huang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Sequential recommender systems have demonstrated a huge success for next-item recommendation by explicitly exploiting the temporal order of users' historical interactions. In practice, user interactions contain more useful temporal information beyond order, as shown by some pioneering studies. In this paper, we systematically investigate various temporal information for sequential recommendation and identify three types of advantageous temporal patterns beyond order, including absolute time information, relative item time intervals and relative recommendation time intervals. We are the first to explore item-oriented absolute time patterns. While existing models consider only one or two of these three patterns, we propose a novel holistic temporal pattern based neural network, named HTP, to fully leverage all these three patterns. In particular, we introduce novel components to address the subtle correlations between relative item time intervals and relative recommendation time intervals, which render a major technical challenge. Extensive experiments on three real-world benchmark datasets show that our HTP model consistently and substantially outperforms many state-of-the-art models. Our code is publically available at https://github.com/623851394/HTP/tree/main/HTP-main.

Original languageEnglish
Title of host publicationIJCNN 2023 - International Joint Conference on Neural Networks, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665488679
DOIs
Publication statusPublished - 2023
Event2023 International Joint Conference on Neural Networks, IJCNN 2023 - Gold Coast, Australia
Duration: 18 Jun 202323 Jun 2023

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2023-June

Conference

Conference2023 International Joint Conference on Neural Networks, IJCNN 2023
Country/TerritoryAustralia
CityGold Coast
Period18/06/2323/06/23

Keywords

  • sequential recommendation
  • temporal information
  • time

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'HTP: Exploiting Holistic Temporal Patterns for Sequential Recommendation'. Together they form a unique fingerprint.

Cite this