TY - GEN
T1 - Homepage augmentation by predicting links in heterogenous networks
AU - Lv, Jianming
AU - Zhong, Jiajie
AU - Chen, Weihang
AU - Xiao, Qinzhe
AU - Yang, Zhenguo
AU - Li, Qing
PY - 2018/10/17
Y1 - 2018/10/17
N2 - Scholars' homepages are important places to show personal research interest and academic achievement through the Web. However, according to our observation, only a small portion of scholars update their publications and related events on their homepages in time. In this paper, we propose a homepage augmentation technique, which automatically shows the newest academic events related to a scholar on his/her homepage. Specifically, we model the relations between homepages and the events collected from the Web as a complex heterogenous network, and propose an Embedding-based Heterogenous random Walk algorithm, namely EHWalk, to predict the links between homepages and events. Compared with existing embedding-based link prediction algorithms, EHWalk supports more efficient modeling of complex heterogenous relations in a dynamically changing network, which helps link the massive new updated events to homepages precisely and efficiently. Comprehensive experiments on a real-world dataset are conducted and the results show that our algorithm can achieve both good effectiveness and efficiency for real-world deployment.
AB - Scholars' homepages are important places to show personal research interest and academic achievement through the Web. However, according to our observation, only a small portion of scholars update their publications and related events on their homepages in time. In this paper, we propose a homepage augmentation technique, which automatically shows the newest academic events related to a scholar on his/her homepage. Specifically, we model the relations between homepages and the events collected from the Web as a complex heterogenous network, and propose an Embedding-based Heterogenous random Walk algorithm, namely EHWalk, to predict the links between homepages and events. Compared with existing embedding-based link prediction algorithms, EHWalk supports more efficient modeling of complex heterogenous relations in a dynamically changing network, which helps link the massive new updated events to homepages precisely and efficiently. Comprehensive experiments on a real-world dataset are conducted and the results show that our algorithm can achieve both good effectiveness and efficiency for real-world deployment.
KW - Embedding
KW - Heterogenous Networks
KW - Homepage Augmentation
UR - http://www.scopus.com/inward/record.url?scp=85058011062&partnerID=8YFLogxK
U2 - 10.1145/3269206.3269249
DO - 10.1145/3269206.3269249
M3 - Conference article published in proceeding or book
AN - SCOPUS:85058011062
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 1611
EP - 1614
BT - CIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
A2 - Paton, Norman
A2 - Candan, Selcuk
A2 - Wang, Haixun
A2 - Allan, James
A2 - Agrawal, Rakesh
A2 - Labrinidis, Alexandros
A2 - Cuzzocrea, Alfredo
A2 - Zaki, Mohammed
A2 - Srivastava, Divesh
A2 - Broder, Andrei
A2 - Schuster, Assaf
PB - Association for Computing Machinery
T2 - 27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Y2 - 22 October 2018 through 26 October 2018
ER -