Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study

Cuifeng Zhou, Zongwen Liu, Xusheng Du, David Richard Graham Mitchell, Yiu Wing Mai, Yushan Yan, Simon Ringer

Research output: Journal article publicationJournal articleAcademic researchpeer-review

40 Citations (Scopus)

Abstract

Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/ PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.

Original languageEnglish
Article number165
Pages (from-to)1-11
Number of pages11
JournalNanoscale Research Letters
Volume7
DOIs
Publication statusPublished - 2012
Externally publishedYes

Keywords

  • Carbon nanofiber
  • Catalyst support
  • Core/shell
  • Methanol oxidation
  • N-doping
  • Polyaniline
  • TEM tomography

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study'. Together they form a unique fingerprint.

Cite this